Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show that label noise exists in adversarial training. Such label noise is due to the mismatch between the true label distribution of adversarial examples and the label inherited from clean examples – the true label distribution is distorted by the adversarial perturbation, but is neglected by the common practice that inherits labels from clean examples. Recognizing label noise sheds insights on the prevalence of robust overfitting in adversarial training, and explains its intriguing dependence on perturbation radius and data quality. Also, our label noise perspective aligns well with our observations of the epoch-wise double descent in adversarial training. Guided by our analyses, we proposed a method to automatically calibrate the label to address the label noise and robust overfitting. Our method achieves consistent performance improvements across various models and datasets without introducing new hyper-parameters or additional tuning.more » « less
-
null (Ed.)Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods.more » « less
-
null (Ed.)In the past decade, the amount of attributed network data has skyrocketed, and the problem of identifying their underlying group structures has received significant attention. By leveraging both attribute and link information, recent state-of-the-art network clustering methods have achieved significant improvements on relatively clean datasets. However, the noisy nature of real-world attributed networks has long been overlooked, which leads to degraded performance facing missing or inaccurate attributes and links. In this work, we overcome such weaknesses by marrying the strengths of clustering and embedding on attributed networks. Specifically, we propose GRACE (GRAph Clustering with Embedding propagation), to simultaneously learn network representations and identify network clusters in an end-to-end manner. It employs deep denoise autoencoders to generate robust network embeddings from node attributes, propagates the embeddings in the network to capture node interactions, and detects clusters based on the stable state of embedding propagation. To provide more insight, we further analyze GRACE in a theoretical manner and find its underlying connections with two canonical approaches for network modeling. Extensive experiments on six real-world attributed networks demonstrate the superiority of GRACE over various baselines from the state-of-the-art. Remarkably, GRACE improves the averaged performance of the strongest baseline from 0.43 to 0.52, yielding a 21% relative improvement. Controlled experiments and case studies further verify our intuitions and demonstrate the ability of GRACE to handle noisy information in real-world attributed networks.more » « less
-
The automated construction of topic taxonomies can benefit numerous applications, including web search, recommendation, and knowledge discovery. One of the major advantages of automatic taxonomy construction is the ability to capture corpus-specific information and adapt to different scenarios. To better reflect the characteristics of a corpus, we take the meta-data of documents into consideration and view the corpus as a text-rich network. In this paper, we propose NetTaxo, a novel automatic topic taxonomy construction framework, which goes beyond the existing paradigm and allows text data to collaborate with network structure. Specifically, we learn term embeddings from both text and network as contexts. Network motifs are adopted to capture appropriate network contexts. We conduct an instance-level selection for motifs, which further refines term embedding according to the granularity and semantics of each taxonomy node. Clustering is then applied to obtain sub-topics under a taxonomy node. Extensive experiments on two real-world datasets demonstrate the superiority of our method over the state-of-the-art, and further verify the effectiveness and importance of instance-level motif selection.more » « less
An official website of the United States government

Full Text Available